Assessment of physical workloads to prevent work-related MSDs

From OSHWiki
Jump to: navigation, search


Rolf Ellegast, Institute for Occupational Safety and Health of the German Social Accident Insurance



Introduction

To prevent work-related musculoskeletal disorders, it is necessary to record and assess physical workloads at the workplace. Numerous methods are available for this, differing however in terms of the precision achieved in the recording and assessment of workload and in terms of user groups. This article gives a classification of physical workloads and an overview of the basic categories of methods for recording and assessment. It cites examples of each category and highlights future fields of action.

Physical workload factors and corresponding MSDs

At many workplaces, physical hazards are still an everyday occurrence. They are considered a risk factor for work-related musculoskeletal disorders (MSDs) that represent one of the most frequent causes of work-related incapacity to work in Europe[1]. The estimated economic production loss due to MSDs is high[2].

For prevention of work-related MSDs risk assessment of physical workloads is an important part of the risk management process. It comprises a multistep approach to improve workplace health and safety and productivity[3]. The general five steps of the risk assessment procedure involve identifying hazards and those at risk, evaluating and prioritising risks, decisions on preventive actions, executing actions and finally monitoring and reviewing at regular intervals.

To tackle work-related MSDs all five steps require precise knowledge of the physical workload factors and an estimate of the associated risks at workplaces. This involves recording physical workload factors associated with work-related musculoskeletal disorders in order, in a second step, to initiate the relevant ergonomic prevention measures.

For the recording and assessment of physical workload factors, numerous methods are available, ranging from interviews and surveys, field measurements and video-analysis up to laboratory measurements and simulations. However, these methods differ among other things in terms of the precision obtained in the recording and assessment of workloads and in terms of user groups. The assessment often targets the risk to a certain region of the body (e.g. the spine). The goal of this article is to classify physical workloads and to give an overview of principle methods for their recording and assessment.

Physical workload factors can be classified in the following categories:

  • Manual material handling , e.g. lifting, holding, carrying, pulling and pushing[4]
  • Working in awkward postures (overload and underload), e.g. awkward trunk postures, crouching, kneeling, squatting, arms above shoulder level, lack of physical activity: sitting, standing, lying
  • Repetitive work
  • Work involving high exertion and/or exposure to force, e.g. climbing, knocking, hammering.

Table 1 shows these physical risk factor categories together with examples of corresponding work-related MSDs and sectors/occupational groups/tasks[5].

Table 1 – Physical workload factors with examples of corresponding work-related MSDs and associated sectors/occupations/tasks

Physical workload factors Examples of correspond-ding work-related MSDs Examples of associated sectors/occupations/tasks
Manual materials handling:
Lifting, holding, carrying Low Back Pain
Intervertebral lumbar disc disorders/injuries (e.g. protrusion, prolapse)

Lower Limb disorders, e.g. osteoarthritis of the hip and knee joints

Construction sector: assembly of scaffolding, masonry work with blocks requiring handling with both hands, carpentry work
Transport trades: vehicle maintenance, baggage handling work at airports

Agriculture, forestry, landscaping
Metal industry: foundries/casting fettlers, metalwork
Nursing and health services: tasks in healthcare and geriatric care
Trade and logistics: warehousing, order-picking, transport work; parcel sorting

Pushing and pulling Low Back Pain
Intervertebral lumbar disc disorders/injuries (e.g. protrusion, prolapse)

Neck Shoulder MSDs

Nursing and health services: pushing and pulling of beds and wheelchairs

Transport trades: pushing and pulling of trolleys on airliners, baggage handling work at airports, special tasks of aviation mechanics, domestic refuse disposal (refuse workers)
Landscaping: pushing and pulling of containers containing plants (loading)
Trade and logistics: warehousing, order-picking and transport work; pushing/pulling of trolleys in mail-order/postal operations
Cross-sector: pushing and pulling of carriages/trucks

Working in awkward postures:
Sitting without effective breaks/with lack of movement Low Back Pain

Neck Shoulder MSDs

Special workplaces/tasks:

Microscopy workplaces
Seated (primarily) activity at a process control system, control panel work
Tasks in drivers' cabs
Surveillance workplaces

Standing without effective relief Lower Limb Disorders Meat-processing industry: meat portioning

Nursing and health services: sustained standing at operating tables, in some cases in conjunction with constrained postures
Retail trade: sales tasks
Construction sector: carpenters

Working in awkward trunk postures, static/dynamic, high proportion of the time Low Back Pain

Intervertebral lumbar disc disorders/injuries (e.g. protrusion, prolapse)

Metals industry: tank construction, shipbuilding, welding in confined spaces, visual weld inspection

Mining: at faces with a free working height of less than approx. 160 cm
Construction sector: concrete technicians, steelfixers, composition floor layers, tilers, plumbers, bricklayers
Transport trades: aircraft loading personnel
Horticulture: vegetable harvesting, plant work, pruning work at ground level, grafting of roses, etc.
Children's daycare facilities: daycare facility staff

Squatting, kneeling, lying Lower Limb Disorders

Low Back Pain

Mining sector: faceworker during extraction – work at the face at a free working height of up to approximately 120 cm

Construction sector: floorers, roofers, tilers, plumbers, parquet layers
Metals industry: welding in confined spaces (e.g. tanks, double bottoms, shipbuilding)
Cross-sector: work in poorly accessible places, e.g. in shipbuilding, turbine manufacture, aircraft manufacture

Arms above shoulder level Low Back Pain

Neck Shoulder MSDs

Construction sector: decorating work, stucco workers and plasterers, plasterboard construction

Automotive industry: special assembly work in the manufacture and maintenance of vehicles
Cross-sector: maintenance work

Repetitive tasks with high handling frequencies Upper limb MSDs, e.g. Carpal Tunnelsyndrome, wrist tendinitis, and lateral epicondylitis Trade, logistics and postal services: tasks in packaging and mail order, mail sorting offices, order-picking

Food industry: for example fish and meat processing
Textile and clothing industry: sewing workplaces
Nursing and health services: masseurs

Work involving high exertion and/or exposure to force Low Back Pain

Upper limb MSDs, e.g. Carpal Tunnelsyndrome, wrist tendinitis, and lateral epicondylitis

Horticulture: tree care/felling with the use of rope-assisted tree-climbing techniques (basic and advanced)

Construction sector: facade construction workers – erection of façades, scaffolding erection during work on special structures (bridges, towers)
Power supply works: maintenance for example of overhead lines, wind-power systems, transmitter towers


Source: [5]

According to the fifth European Working Condition Survey in 2010 the physical workload factors are still widely spread in the EU member states[6]. For instance, a third of all workers reported that they have to carry heavy loads at least a quarter of their working time. Almost half of all polled workers indicated that they are working in awkward body postures. Some physical exposures differ for men and women, others not. Men are more regularly involved in manual material handling tasks, whereas no gender differences could be observed for repetitive tasks.

Assessment of physical workloads

Figure 1: Basic categories of methods for recording and assessment of physical workloads at the workplace and potential user groups

Figure 1 shows the basic categories of methods for recording and assessment of physical workloads at the workplace with their potential user groups[5]. The top category (Level 1) covers questionnaires and self reported data. In this category workers have to estimate retrospectively the occurrence and frequency of their daily amount of physical workload. Epidemiological studies on work-related MSDs often use self-reported data for exposure assessment. These methods are known as inaccurate workload assessments as the workers’ ability to estimate their physical exposure is limited and workers that already suffer from MSDs tend to overestimate their exposure. In the next category (Level 2) checklists are used to identify workload focused at the workplace. Normally checklists contain limiting values for the assessment of specific physical workload types. If these limiting values are exceeded, workload focuses can be identified.[7]. Checklists are often used in combination with medical check-ups[8].

If workload focuses exist, such as the lifting and carrying of loads, it is advisable to employ more specific observational methods (Level 3) in order to assess the associated risk factors a little more precisely. Examples for screening observational methods in this category are the Finnish OWAS method[9] and some newer methods like the Key Indicator Methods (KIM)[10][11][12] and the MAC tool[13] that address lifting and carrying, pulling and pushing and manual work processes and the ART tool for assessing repetitive tasks [14].

The observational screening methods afford simple, quick and practical application. For the recording and assessment of workloads of the upper extremities, additional methods such as the RULA method (Rapid Upper Limb Assessment)[15], the OCRA method/OCRA checklist[16][17] and the Hand Activity Level (HAL)[18] are available.

The application of these methods is particularly suited to cyclic, uniform workload profiles at workplaces. Their application is limited in cases of the assessment of more complex work processes that are difficult to classify in the general workload categories. For certain types of work, such as activities involving physical exertion or awkward postures, there are few observational assessment methods. An example of an expert observational method for the assessment of activities involving physical exertion and/or exposure to force is the Exertion Atlas developed under the supervision of the Institute of Ergonomics of Darmstadt Technical University (IAD). For the assessment of different types of workload and particularly for cyclic activities in the automotive and supply industry, the IAD has developed the AAWS (Automotive Assembly Worksheet)[19] and the EAWS (European Assembly Worksheet)[20] in this category.

Observational methods are subject to the usual limitations of this category. The drawback of these methods is that they only roughly classify workload categories and often do not adequately reflect the complexity of work processes[21]. In particular, three-dimensional movements, such as the torsion and lateral flexion of the back, can only be recorded with great inaccuracy using observation methods[22]. Furthermore, it is not possible to appropriately record and assess the pattern of stressing and rest over time.

Therefore some applications necessitate the performance of measurements of physical workloads directly at the workplace (field measurements, Level 4). A number of measuring systems have been developed for the recording and analysis of body posture and movements in the work process. Most of these are designed specifically for the recording of the movement of parts of the body, e.g. the back[23][24]. One example of a field measuring system that allows for long-time analyses (e.g. for an entire work shift) is the CUELA (“computer-aided recording and long-term analysis of musculoskeletal workloads”) measuring method[25][5]. It permits the continuous recording and analysis of physical workload factors directly at the workplace. Given prior training, field measuring methods can be applied with a degree of effort comparable to that for the expert screening method. Depending on the application, the field measuring methods permit an assessment on the basis of biomechanical, energy/cardiopulmonary, muscular, psychophysical and epidemiological criteria. The limitations of measuring methods at the workplace include limitations in terms of the measurement accuracy (e.g. for measurements of exertion) characteristic of field measurements in real working conditions.

This is where laboratory measurements (Level 5) in which work processes are replicated under standardised experimental conditions yield the most precise data on the physical workload situation. Such laboratory measurements have been conducted for the analysis of several activities as nursing and for specific workloads[26][27][28].

Knowledge gaps and future activities

The presented methods of the various recording and assessment levels have been developed in most cases independently of one another and have rarely been combined. The precise principles for the assessment of each method have not always been disclosed in detail. Efforts should be made here to interlink the methods of all levels and precisely present the assessment principles. As a result it would be possible to identify gaps in the knowledge, develop the methods on all levels further and eliminate discrepancies in the assessment results.

Examples of gaps in the knowledge include the lack of approaches for the assessment of awkward postures and a consideration of both the risks of under-stimulation and of the pattern of stressing and rest (recovery phases) over time. The goal for prevention is to recommend the right degree of workload and thus prevent both occupational overload as well as under-stimulation, e.g. from lack of exercise.

For the assessment of the risks associated with specific work-related musculoskeletal diseases, e.g. Carpal Tunnel Syndrome (CTS), there is a need for assessment methods that do justice to the associated specific risk factors. Also relevant to CTS are assessments of the speed and frequency of wrist movements that are virtually impossible to determine using observational methods. One way of nevertheless obtaining near-authentic assessments involves compiling activity-specific exposure databases based on objective measured values. For the assessment of the knee-stressing activities associated with a high risk of inducing gonarthrosis, such a database has been established[29]. Another advantage of these exposure databases is the possibility of using them in epidemiological studies. At present, exposure data on physical workloads in epidemiological studies are mainly recorded by questioning the persons concerned and are subject to the limitations of retrospective exposure recording. The inaccuracies associated with this could be reduced considerably by using exposure databases.

Along with physical workloads, it is important to take account of mental and psychosocial workloads that are associated with musculoskeletal disorders. Examples of this type of workload factors include:

  • Highly demanding work
  • Poor control/scope for decision-making
  • Lack of social support (from superiors, colleagues)
  • Insufficient gratification
  • Dissatisfaction with work
  • Workplace insecurity
  • Monotony

The development of methods for the combined recording and assessment of physical and mental/psychosocial workloads at the workplace therefore represents a further important field of action.

References

  1. Eurofound – European Foundation for the Improvement of Living and Working Conditions, European Working Conditions Survey (EWCS) 4, 2007. Available at: [1]
  2. HSE – Health and Safety Executive, Cost benefit studies that support tackling musculoskeletal disorders, Research Report 491, 2006, Available at: [2]
  3. EU-OSHA – European Agency for Safety and Health at Work, Risk assessment – the key to healthy workplaces, Factsheets n° 81, 2008. Available at: [3]
  4. Directive 90/269/EEC – manual handling of loads. Retrieved on 1 March 2015, from: [4]
  5. 5.0 5.1 5.2 5.3 IFA – Institute for Occupational Safety and Health of the German Social Accident Insurance, The CUELA measuring system. Retrieved on 01 September 2014, from: [5]
  6. Eurofound – European Foundation for the Improvement of Living and Working, Conditions, European Working Conditions Survey (EWCS) 5., 2010. Available at: [6]
  7. EU OSHA – European Agency for Safety and Health at Work, E-facts 45 - Checklist for preventing bad working postures, 2007. Available at: [7]
  8. Hartmann, B., Ellegast, R., Schäfer, K., Hecker, C., Kusserow, H., Steinberg, U., Ponto, K., Jäger, M., Meixner, T., Neugebauer, G., ‘Eine Checkliste zur Prüfung des Angebots arbeitsmedizinischer Vorsorge bei körperlichen Belastungen des Muskel-Skelett-Systems‘, ASU, Nr. 9, 2007, pp. 499-507.
  9. Karhu, O., Härkönen, R., Sorvali, P., Vepsäläinen, P., ‘Observing working postures in industry: Examples of OWAS application‘, Appl Ergon., 12(1), 1981, pp. 13-7. Available at: [8]
  10. Caffier, G., Steinberg, U., Liebers, F., Praxisorientiertes Methodeninventar zur Belastungs- und Beanspruchungsbeurteilung im Zusammenhang mit arbeitsbedingten Muskel-Skelett-Erkrankungen, Bremerhaven: NW Wirtschaftsverlag, Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin Dortmund/Berlin: Forschung, 1999, Fb 850.
  11. Steinberg, U., Behrendt, S., Caffier, G., Schultz, K., Jakob, M., Leitmerkmalmethode Manuelle Arbeitsprozesse. Erarbeitung und Anwendungserprobung einer Handlungshilfe zur Beurteilung der Arbeitsbedingungen, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund, 2007.
  12. Steinberg, U., 'New tools in Germany: development and appliance of the first two KIM ("lifting, holding and carrying" and "pulling and pushing") and practical use of these methods', Work: A Journal of Prevention, Assessment and Rehabilitation, 2012, 41, pp. 3990-3996.
  13. HSE – Health and Safety Executive, Manual handling assessment chart (MAC) tool (2003). Retrieved on 14 June 2011, from: [9]
  14. HSE – Health and Safety Executive, Assessment of Repetitive Tasks (ART) tool. Retrieved 5 March 2015: [10]
  15. McAtamney, L., Corlett, E. N., ‘RULA: a survey method for the investigation of work-related upper limb disorders’, Applied Ergonomics, Vol. 24, Issue 2, 1993, pp. 91-99. Available at: [11]
  16. Colombini, D., Occhipinti, E., Baracco, A., ‘A new check list model, set with the OCRA Index, to evaluate exposure to repetitive movements of the upper limbs‘, Proceedings of the IEA 2000/HFES 2000 Congress 5, 2000, pp. 716-719. Available at: [12]
  17. Occhipinti, E., Colombini, D., ‘OCRA Index and OCRA Checklist’, Handbook of Human Factors and Ergonomics Methods, 15-1–15-14, 2004.
  18. Bao, S., Howard, N., Spielholz, P., Silverstein, B., ‘Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders – Part II: comparison of different methods of measuring force level and repetitiveness‘, Ergonomics, 2006, Vol. 49, Number 4, pp. 381-392(12)
  19. Schaub, K., ’Das „Automotive Assembly Worksheet” (AAWS)’, Landau, K., Montageprozesse gestalten: Fallbeispiele aus Ergonomie und Organisation, Stuttgart, Ergonomia-Verlag, 2004, pp. 91-111.
  20. Schaub, K., Caragnano, G., Britzke, B., Bruder, R., ‘The European Assembly Worksheet’, Mondelo, P., Karwowski, W., Saarela, K., Swuste, P., Occhippinti, E., Proceedings of the VIII International Conference on Occupational Risk Prevention, ORP 2010, Valencia 5.-7.5.2010, (CD-Rom).
  21. Li, G., Buckle, P., ‘Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods’, Ergonomics, 42, 1999, pp. 674-695.
  22. Kilbom, Å., ‘Repetitive work of the upper extremity: Part I – Guidelines for the practitioner’, International Journal of Industrial Ergonomics, 14, 1994, pp. 51-57.
  23. Marras, W. S., Fathallah, F. A., Miller, R. J., Davis, S. W., Mirka, G. A., ‘Accuracy of a three-dimensional lumbar motion monitor for recording dynamic trunk motion characteristics’, International Journal of Industrial Ergonomics, 9, 1992, pp. 75-87.
  24. Plamondon, A., Delisle, A., Larue, C., Brouillette, D., McFadden, D., Desjardins, P., Lariviere, C., ‘Evaluation of a hybrid system for three-dimensional measurement of trunk posture in motion’, Appl. Ergonomics, 38, 2007, pp. 697-712.
  25. Ellegast, R. P., Hermanns, I., Schiefer, C., ‘Workload assessment in field using the ambulatory CUELA system‘, Digital Human Modeling LNCS 5620, V. G. Duffy, Springer, Berlin, 2009, pp. 221-226. Available at: [13]
  26. Jäger, M., Theilmeier, A., Jordan, C., Luttmann, A., ‘Dortmunder Lumbalbelastungsstudie 3 – Ermittlung der Belastung der Lendenwirbelsäule bei ausgewählten Pflegetätigkeiten mit Patiententransfer. Teil 3: Biomechanische Beurteilung von Tätigkeiten im Gesundheitsdienst hinsichtlich der Möglichkeiten zur Prävention von Gefährdungen der Wirbelsäule‘, Shaker, Aachen, 2008.
  27. Jäger, M., Jordan, C., Theilmeier, A., Göllner, R., Luttmann, A., ‘Belastung der Lendenwirbelsäule bei branchenübergreifend auftretenden Arbeitssituationen mit Lastenhandhabung‘, Konietzko J., Dupuis H., Letzel S., Handbuch der Arbeitsmedizin, 36. Erg.-Lfg., Kap. IV-31, 2004, pp. 1-28, ecomed, Landsberg a.L.
  28. Glitsch, U., Ottersbach, H. J., Ellegast, R. P., Schaub, K., Franz, G., Jäger, M., ‘Physical workload of flight attendants when pushing and pulling trolleys aboard aircraft‘, International Journal of Industrial Ergonomics, 37, 2007, pp. 845-854.
  29. Ditchen, D., Ellegast, R. P., Rehme, G., Gonkatast – A measured value register for occupatrional-related knee stress, IFA-Report 1/2010, Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Sankt Augustin, 2010. Available at: [14]


Links for further reading

EU-OSHA - European Agency for Safety and Health at Work, OSH in figures: Work-related musculoskeletal disorders in the EU - Facts and figures, Available at: [15]

EU-OSHA - European Agency for Safety and Health at Work, The human-machine interface as an emerging risk, Available at: [16]

EU-OSHA - European Agency for Safety and Health at Work, E-fact 45 - Checklist for preventing bad working postures, Available at: [17]

EU-OSHA - European Agency for Safety and Health at Work, E-fact 44 - Checklist for the prevention of manual handling risks, Available at: [18]

EU-OSHA - European Agency for Safety and Health at Work, E-fact 43 - Checklist for preventing WRULDs, Available at: [19]

EU-OSHA - European Agency for Safety and Health at Work, E-fact 42 - Checklist for prevention of lower limb disorders, Available at: [20]

EU-OSHA – European Agency for Safety and Health at work, Work-related musculoskeletal disorders: prevention report, 2008, Available at: [21]



{{#jskitrating:view=score}}

OSH: Physical workWork loadMusculoskeletal disordersRisk assessment
NACE: Growing of non-perennial cropsGrowing of perennial cropsAnimal productionMixed farmingSupport activities to agriculture and post-harvest crop activitiesLoggingSupport services to forestryFishingAquacultureMining of hard coalMining of ligniteExtraction of crude petroleum and natural gasMining of metal oresQuarrying of stoneMining support service activitiesProcessing and preserving of meat and production of meat productsProcessing and preserving of fishProcessing and preserving of fruit and vegetablesManufacture of vegetable and animal oils and fatsManufacture of dairy productsManufacture of grain mill productsManufacture of starches and starch productsManufacture of bakery and farinaceous productsManufacture of other food productsManufacture of prepared animal feedsManufacture of beveragesPreparation and spinning of textile fibresWeaving of textilesFinishing of textilesManufacture of other textilesManufacture of wearing apparelTanning and dressing of leather; dressing and dyeing of furManufacture of luggageManufacture of footwearSawmilling and planing of woodManufacture of products of woodManufacture of paper and paper productsPrinting of newspapersOther printingBinding and related servicesManufacture of coke oven productsManufacture of basic chemicalsManufacture of pesticides and other agrochemical productsManufacture of paintsManufacture of soap and detergentsManufacture of perfumes and toilet preparationsManufacture of explosivesManufacture of gluesManufacture of basic pharmaceutical productsManufacture of pharmaceutical preparationsManufacture of rubber and plastic productsManufacture of glass and glass productsManufacture of refractory productsManufacture of clay building materialsManufacture of other porcelain and ceramic productsManufacture of cementManufacture of articles of concreteCuttingManufacture of abrasive products and non-metallic mineral products n.e.c.Manufacture of basic metalsManufacture of structural metal productsManufacture of tanksManufacture of steam generatorsManufacture of weapons and ammunitionForgingTreatment and coating of metalsMachiningManufacture of cutleryManufacture of other fabricated metal productsManufacture of electric motorsManufacture of batteries and accumulatorsManufacture of wiring and wiring devicesManufacture of electric lighting equipmentManufacture of domestic appliancesManufacture of general-purpose machineryManufacture of other general-purpose machineryManufacture of agricultural and forestry machineryManufacture of metal forming machineryManufacture of other special-purpose machineryManufacture of bodies (coachworkManufacture of bodies (coachworkBuilding of ships and boatsManufacture of air and spacecraft and related machineryManufacture of military fighting vehiclesManufacture of motorcyclesManufacture of furnitureManufacture of jewelleryManufacture of musical instrumentsManufacture of sports goodsManufacture of games and toysRepair of fabricated metal productsInstallation of industrial machinery and equipmentElectric power generationManufacture of gas; distribution of gaseous fuels through mainsWater collectionSewerageWaste collectionWaste treatment and disposalMaterials recoveryRemediation activities and other waste management servicesOFFICE CLERKSCivil engineeringDemolition and site preparationElectricalBuilding completion and finishingRoofing activitiesRetail sale in non-specialised storesRetail sale of foodRetail sale of automotive fuel in specialised storesRetail sale of information and communication equipment in specialised storesRetail sale of other household equipment in specialised storesRetail sale of cultural and recreation goods in specialised storesRetail sale of other goods in specialised storesRetail sale via stalls and marketsPassenger rail transportFreight rail transportUrban and suburban passenger land transportFreight transport by roadSea and coastal passenger water transportSea and coastal freight water transportInland passenger water transportInland freight water transportPassenger air transportFreight air transport and space transportPostal activities under universal service obligationHotels and similar accommodationHoliday and other short-stay accommodationCamping groundsTelevision programming and broadcasting activitiesWired telecommunications activitiesWireless telecommunications activitiesResearch and experimental development on natural sciences and engineeringCombined facilities support activitiesOrganisation of conventions and trade showsHospital activitiesResidential care activities